Back to Blog
API monitoring
API development tools
API testing
API development

API Caching Strategies for Better Performance

4 min read
K
Kevin
API Security Specialist

API Caching Strategies for Better Performance

Caching is a critical technique for improving API performance, reducing latency, and minimizing redundant computations. Well-implemented caching strategies can significantly enhance scalability while lowering infrastructure costs.

Why API Caching Matters

APIs often serve repetitive requests with identical responses. Without caching, each request triggers:

  • Database queries
  • Business logic execution
  • Network roundtrips

Caching stores frequently accessed data in faster storage layers (memory, CDN, or edge networks), reducing backend load and improving response times.

Common Caching Strategies

1. Client-Side Caching

Client-side caching leverages HTTP headers to instruct browsers or mobile apps to store responses locally.

Key Headers:

  • Cache-Control: Defines caching behavior (e.g., max-age=3600 for 1-hour caching)
  • ETag: Enables conditional requests using resource fingerprints
  • Last-Modified: Similar to ETag but uses timestamps

Example Implementation (Node.js):

app.get('/products/:id', (req, res) => {
  const product = fetchProduct(req.params.id);
  res.setHeader('Cache-Control', 'public, max-age=3600');
  res.setHeader('ETag', generateETag(product));
  res.json(product);
});

Pros:

  • Reduces server load
  • Minimizes network traffic

Cons:

  • Clients may ignore headers
  • Stale data risk if not invalidated properly

2. Server-Side In-Memory Caching

For high-throughput APIs, in-memory caches like Redis or Memcached store processed responses.

Example (Redis with Python Flask):

from flask import Flask
import redis

app = Flask(__name__)
cache = redis.Redis(host='redis', port=6379)

@app.route('/products/<id>')
def get_product(id):
    cached_data = cache.get(f'product:{id}')
    if cached_data:
        return cached_data
    
    product = fetch_product_from_db(id)
    cache.setex(f'product:{id}', 3600, product)  # TTL: 1 hour
    return product

Pros:

  • Sub-millisecond response times
  • Reduces database load

Cons:

  • Cache invalidation complexity
  • Memory-bound scalability

3. CDN & Edge Caching

For globally distributed APIs, CDNs cache responses at edge locations.

Implementation (Cloudflare Workers):

addEventListener('fetch', event => {
  event.respondWith(handleRequest(event.request));
});

async function handleRequest(request) {
  const cache = caches.default;
  let response = await cache.match(request);

  if (!response) {
    response = await fetch(request);
    response = new Response(response.body, response);
    response.headers.append('Cache-Control', 's-maxage=86400'); // 24h
    event.waitUntil(cache.put(request, response.clone()));
  }

  return response;
}

Pros:

  • Reduced latency for global users
  • Offloads origin servers

Cons:

  • Higher cost for dynamic content
  • Limited control over purge timing

4. Database Query Caching

Some databases (e.g., PostgreSQL, MySQL) cache query results automatically.

PostgreSQL Example:

-- Enable query caching
ALTER SYSTEM SET shared_buffers = '4GB';  # Allocate memory for cache

Pros:

  • No application changes required
  • Works for complex queries

Cons:

  • Cache invalidated on table updates
  • Less granular than application-level caching

Cache Invalidation Strategies

Caching introduces complexity in maintaining data consistency. Common invalidation approaches:

Time-Based Expiration (TTL)

// Redis example with 1-hour TTL
cache.setex('key', 3600, data);

Best for:

  • Data that changes predictably
  • Non-critical real-time accuracy

Event-Driven Invalidation

# Django signal example
from django.core.cache import cache
from django.db.models.signals import post_save

def invalidate_cache(sender, instance, **kwargs):
    cache.delete(f'product:{instance.id}')

post_save.connect(invalidate_cache, sender=Product)

Best for:

  • Critical real-time data
  • Write-heavy applications

Hybrid Approach

Combine TTL with event-driven purges for resilience against missed events.

Advanced Techniques

Cache-Aside (Lazy Loading)

func GetProduct(id string) (Product, error) {
    data, err := cache.Get(id)
    if err == nil {
        return data, nil
    }

    product := db.Query("SELECT * FROM products WHERE id = ?", id)
    cache.Set(id, product, 30 * time.Minute)
    return product, nil
}

Write-Through Caching

// Spring Cache example
@CachePut(value = "products", key = "#product.id")
public Product updateProduct(Product product) {
    return repository.save(product);
}

Monitoring & Metrics

Track cache performance to optimize strategies:

  • Hit Ratio: (Cache Hits) / (Cache Hits + Misses)
  • Latency Reduction: Compare cached vs. uncached responses
  • Memory Usage: Prevent evictions due to over-allocation

Prometheus Example:

# Redis metrics config
scrape_configs:
  - job_name: 'redis'
    static_configs:
      - targets: ['redis:9121']

For next steps, experiment with multi-layer caching (e.g., in-memory + CDN) and evaluate tools like Varnish or Apache Traffic Server for advanced use cases.

Back to Blog